Problems of identifying periodontopathogenic bacterial flora and potential solutions to them by mathematical modeling of an effective dielectric response using the example of S. aureus (reference strain)

Authors

  • Анатолій Володимирович Гончаренко
  • Валерій Георгійович Бургонський
  • Святослав Ігорович Миколайчук

DOI:

https://doi.org/10.33295/1992-576X-2020-5-30

Keywords:

impedance spectroscopy, periodontitis, periodontopathogens, mathematical modeling, the Bergman-Milton spectral representation, dielectric response of bacterial suspensions, S. Aureus

Abstract

The aim of the study was to create a multiparametric mathematical model describing the dielectric response of Staphylococcus aureus suspensions for its further use to interpret dielectric spectra and identify the parameters of periodontopathogenic bacterial flora, that would optimize diagnostic processes in periodontology.
Materials and methods. The study was based on the use of the Bergman-Milton analytical spectral representation for the effective dielectric response, generalized to the case of inclusions (bacteria), which can be modeled as core-shell- spheroids. The developed software using the Matlab numerical computing environment allowed us to determine the effective dielectric conductivity and dielectric losses as a function of material and geometrical parameters of the bacterial suspension. The material parameters and the inclusion sizes (Staphylococcus aures – S. Aureus bacteria) were taken from literature sources; geometrical parameters characterizing the bacteria shape were considered as model variables. To illustrate the application of the method, the spectral density function of the simplest kind, sush as a homogeneous distribution of spheroidal shapes with a median corresponding to the spherical shape, was used.
Results. The spectra of the real and imaginary part of the effective dielectric function εeff of S. Aureus aqueous suspensions in the frequency range of 1–104 KHz at different values of a nonsphericity parameter, characterizing the fluctuations of the bacterial shape around the spherical one, were calculated. It is shown that shape fluctuations can significantly affect Re εeff only at low frequencies, where they increase Re εeff. At high frequencies, the shape fluctuations only slightly reduce Re εeff. The imaginary part of the effective dielectric function (dielectric losses) shows a weak dependence on the nonsphericity parameter with in the entire frequency range. Other calculations indicate that the increase in the electrical conductivity of the plasma membrane, which characterizes S. Aureus dead bacteria, is accompanied by a marked decrease in Re εeff at frequencies below 1 MHz.
Conclusion. By the example of S. Aureus, we demonstrated the use of a generalized spectral model of the effective dielectric response for the interpretation of the dielectric spectra of pathogenic microorganisms. The simplicity and analyticity of the model make it a convenient and promising tool for biophysical and medical studies. The generalized spectral model can be used to solve thel direct problem, namely to determine the influence of material and geometrical parameters of bacteria on their dielectric spectra, as well as to solve the inverse problem, which consists in finding the model parameters by processing the experimental dielectric spectra.
Key words: impedance spectroscopy, periodontitis, periodontopathogens, mathematical modeling, the Bergman-Milton spectral representation, dielectric response of bacterial suspensions, S. Aureus.

Author Biographies

Анатолій Володимирович Гончаренко

Гончаренко Анатолій Володимирович – канд. фіз.-мат. наук,
старший науковий співробітник Інституту фізики напівпровідників ім. В.Є. Лашкарьова НАН України.
Адреса: 03028, Київ, проспект Науки, 41.
Тел.: (068)3094867. E-mail: avg@isp.kiev.ua.

Валерій Георгійович Бургонський

Бургонський Валерій Георгійович – кандидат мед. наук,
доцент кафедри стоматології Інституту стоматології НМАПО імені П.Л. Шупика.
Адреса: 03150, м. Київ, вул. Пимоненка, 10а.
Тел.: (067)9964062. E-mail: burhonskyy@gmail.com.

Святослав Ігорович Миколайчук

Миколайчук Святослав Ігорович – аспірант кафедри стоматології Інституту стоматології НМАПО імені П.Л. Шупика.
Адреса домашня: Київська область, Києво-Святошинський р-н., с. Софіївська Борщагівка 08131, вул. Соборна 103/10 кв. 78.
Тел.: (068)9469257. E-mail: 9mars@ukr.net

References

1. GBD 2015. Disease and Injury Incidence and Prevalence Collaborators (2016). Global, regional, and national incidence, prevalence, and years lived with disability
for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet (London, England), 388 (10053), 1545–1602.
https://doi.org/10.1016/S0140-6736(16)31678-6
2. Quantitative detection of Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa in human oral epithelial cells from subjects with periodontitis
and periodontal health Andrea V. Colombo, Graziela M. Barbosa, Daniela Higashi, Giorgio di Micheli, Paulo H Rodrigues 1 and Maria Regina L Simionato.
Journal of Medical Microbiology (2013), 62, 1592–1600; https://doi.org/10.1099/jmm.0.055830-0
3. Prevalence of periodontal disease, its association with systemic diseases and prevention. Nazir MA. International Journal of Health Sciences. 2017; 11 (2): 72–80
4. Analysis of transcription of the Staphylococcus aureus aerobic class Ib and anaerobic class III ribonucleotide reductase genes in response to oxygen. Masalha
M, Borovok I, Schreiber R, Aharonowitz Y, Cohen G. Journal of Bacteriology. 183 (24): 7260–72. doi:10.1128/JB.183.24.7260-7272.2001
5. Rychard Dzh Lamont, Robert A Berne, Merylyn S Lantts. Mykrobyologyia i immunologyia dlia stomatologov. Pod red prof VK Leonteva. Moskva, 2010, 502 p.
[In Russian]
6. Burgonskyi V, Mykolaichuk S. Photoactivated Disinfection and Backscattered Indicatrix Use for Follow-Up and Diagnostics of Generalized Periodontal Disease.
Materials of 7 EUROPEAN DIVISION CONGRESS OF THE WFLD, 20–22 June 2019, Parma, Italy
7. Madigan MT, Martinko J, Stahl D, Clark D. Brock Biology of Microorganisms, 13-th ed. Benjamin Cummings, San Francisco, 2012
8. Bissonnette L, Bergeron MG. POC Tests in Microbial Diagnostics. In: Sails A, Tang Y-W (Eds), Methods in Microbiology. Elsevier, 2015, pp. 87–110
9. Hulme J. Recent advances in the detection of methicillin resistant Staphylococcus aureus (MRSA). BioChip J. 11, 89–100 (2017)
10. Flores-Cosio G, Herrera-Lopez EJ, Arellano-Plaza, Gschadler-Mathis A, Kirchmayr M, Amaya-Delgado L. Application of dielectric spectroscopy to unravel the
physiological state of microorganisms: current state, prospects and limits. Appl Microbiol Biotechnol. 104, 6101-6113 (2020)
11. Dmytruk NL, Goncharenko AV, Venger EF. Optics of Small Particles and Composite Media. Kyiv, Naukova Dumka, 2009
12. Goncharenko AV and Chang YC. Effective dielectric properties of biological cells: Generalization of the spectral density function approach. J. Phys. Chem. B,
113, 9924–9931 (2009)
13. Sanchis A, Brown AP, Sancho M, Martinez G, Sebastian JL, Munoz S, Miranda JM. Dielectric characterization of bacterial cells using dielectrophoresis. Bioelectromagnetics
28, 393–401 (2007).
14. Chen Q, Cao Z, Yuan YJ. Study on non-bioparticles and Staphylococcus aureus by dielectrophoresis. RSC Adv. 10, 2598–2614 (2020).

Published

2020-12-28

Issue

Section

PARADONTOLOGY