The aspects of the use of laser radiation for optimizing diagnostic techniques in the follow-up of patients with generalized periodontal disease

Authors

  • Валерій Георгійович Бургонський
  • Святослав Ігорович Миколайчук
  • Ольга Леонідівна Бондарчук
  • Володимир Вікторович Мультян
  • Володимир Ярославович Гайворонський

DOI:

https://doi.org/10.33295/1992-576X-2019-5-24

Keywords:

periodontal pathogen, biofluorescence, Mie theory, intensity of elastic optical scattering

Abstract

The aim of the research is to study the possibilities of using laser radiation (biofluorescence, elastic scattering) for diagnostic purposes to optimize and identify periodontopathogenic microorganisms.

Materials and methods. For the biofluorescence fixation experiment, we used a 632.8 nm helium neon laser, 3mW; a 668 nm Lika surgeon M semiconductor laser, 30–250 mW; the Ocean Optics USB4000 miniature fiber optic spectrometer; quartz light guides, tripods; reference strains of microorganisms: Escherichia coli, Candida albicans, Klebsiella pneumoniae, Proteus mirabilis, Corynebacterium pseudodiphtheriae, Staphylococcus aureus, Staphylococcus epidermidis cultured on agar; a laptop with SpectraSuite software. The elastic scattering angular distribution was analyzed on the developed experimental platform. The excitation source was a 532 nm continuous-wave (CW) laser (TEM00 mode) with a power of <50 mW. The elastic scattering angular distribution in the anterior and posterior hemispheres for aqueous suspensions of Staphylococcus aureus and Escherichia coli was investigated.

Results. During the first part of the experiment, the colonies of the reference microorganisms were alternately irradiated by laser radiation beam first from neon laser helium, then from semiconductor laser. The reflection spectrum was recorded by the Ocean Optics USB4000 spectrometer and processed on a laptop using SpectraSuite software. The samples were irradiated at different angles (90 °, 45 °) in the dark, on a dark substrate. The radiation power of helium neon laser was stable – 3mW, and the radiation power of semiconductor varied in the range of 30-100mW. After irradiation of all the samples of cultures, as described above, and after the spectrograms processing, we did not get confirmation of the theory of biofluorescence: basically the spectrometer recorded only the spectrum of the reflected laser radiation. In the second part of the experiment, we investigated the elastic scattering angular distribution in the anterior and posterior hemispheres for aqueous suspensions of Staphylococcus aureus and Escherichia coli which have different spatial form factors. It was shown that complete integral extinction into the anterior hemisphere is linearly proportional to the bacterial concentration estimated by the McFarland standard on a certified device. A more detailed analysis of the elastic scattering angular distribution showed that the suspension of Staphylococcus aureus had a decrease in scattering in the anterior hemisphere and enhanced scattering in the posterior hemisphere compared with a suspension of bacteria Escherichia coli. The presented method can be applied to solve the problem of classification of microorganisms by the modelling of the elastic scattering angular distribution on the basis of models of elementary scatters with different form factors according to the Mie theory.

Conclusion. The experiments on the study of biofluorescence of colonies of bacteria have not confirmed the possibility of recording specific spectra from each of the strains. However, the results of the study of elastic scattering in the suspensions of microorganisms indicated the possibility of determining the structural and concentration features of their content, namely to differentiate the rod shaped flora from the coccoid, and to estimate the relative number of particles in the suspension. The development of this technology can greatly simplify the diagnostics without the use of expensive and technologically difficult research methods in the future

Key words: periodontal pathogen, biofluorescence, Mie theory, intensity of elastic optical scattering.

Author Biographies

Валерій Георгійович Бургонський

Бургонський Валерій Георгійович – канд. мед. наук,
доцент кафедри стоматології Інституту стоматології НМАПО імені П.Л. Шупика
Адреса домашня: Київ, вул.. Велика Васильківська, 85/87, кв.146
Тел.: 044 482 08 41. E-mail: burhonskyy@gmail.com.

Святослав Ігорович Миколайчук

Миколайчук Святослав Ігорович – аспірант кафедри стоматології Інституту стоматології НМАПО імені П.Л. Шупика
Адреса домашня: Київська область, Києво-Святошинський р-н., с. Софіївська Борщагівка 08131, вул. Соборна 103/10 кв. 78.
Тел.: (068)9469257. E-mail: 9mars@ukr.net.

Ольга Леонідівна Бондарчук

Бондарчук Ольга Леонідівна – лікар-бактеріолог вищої категорії клініко-діагностичної
лабораторії Київської міської клінічної лікарні № 4
Адреса домашня: м. Київ, 03049, вул. Шовкуненка 8/20 кв. 102
Тел.: (066)1305037. E-mail: origa@ukr.net.

Володимир Вікторович Мультян

Мультян Володимир Вікторович – канд. фіз.-мат. наук,
науковий співробітник лабораторії нелінійно-оптичної діагностики новітніх матеріалів Інституту фізики НАН України.
Адреса пр. Науки 46, корп.1, к. 240, 03028 Київ.
Тел.: 044 5250814. E-mail: multian.v.v@gmail.com.

Володимир Ярославович Гайворонський

Гайворонський Володимир Ярославович – д-р фіз.-мат. наук, проф.,
завідувач лабораторією нелінійно-оптичної діагностики новітніх матеріалів Інституту фізики НАН України.
Адреса: пр. Науки 46, корп.1, к. 238, 03028 Київ.
Тел.: 044 525081, факс: 044 5251589. E-mail: vlad@iop.kiev.ua

References

1. Aleksandrov MT. Lazernaia klynycheskaia byofotometryia: (teoryia, eksperyment,
praktyka). – M. – «Tekhnosfera»; 2008. 583 p. [In Russian].
2. Aleksandrov MT, Budanova EV, Bahramova HE, et al. Sposob ydentyfykatsyy
mykroorhanyzmov s pomoshchiu effektahyh antskohoramanskoho rasseyvannyia. Mezhdunarodnyi
nauchno-yssledovatelskyi zhurnal. 2017; 6 (60) Chast 2; 50-55 p. [In Russian].
3. Burhonskyi VH. Vozmozhnosty yspolzovanyia lazernykh tekhnolohyi s tseliulechenyia
y profylaktyky na parodontolohycheskom y khyrurhycheskom stomatolohycheskom
pryeme. Suchasna stomatolohiia. 2009; 5: 64-68 p. [In Russian].
4. Burhonskyi VH. Lazery v stomatolohyy. Metodycheskye rekomendatsyy MZ Ukrayny,
NMAPO, Ynstytut stomatolohyy NMAPO. Kyev. 2009: 56 p. [In Russian].
5. Burhonskyi VH. Fotodynamycheskaia terapyia v praktycheskoi stomatolohyy.
Uchebno-metodycheskoe posobye. Kyev; 2012. 39 p. [In Russian].
6. Burhonskyi VH. Opyt prymenenyia lazernykh tekhnolohyi v stomatolohycheskoi
praktyke. Stomatoloh (Belarus). 2013; 2(9): 55-57 p. [In Russian].
7. Burhonskyi VH, Mykolaichuk SI. Perspektyvy vykorystannia fotodynamichnoi terapii
v likuvanni kariiesu. Suchasna stomatolohiia. 2015; 2(76): 14-15 p. [In Ukrainian].
8. Burhonskyi VH. Sovremennye aspekty profylaktyky, lechenyia y reabylytatsyy v
stomatolohyy. K., 2016. 50-105 p. [In Russian].
9. Burhonskyi VH, Mykolaichuk SI. Suchasni mozhlyvosti zastosuvannia lazernykh
tekhnolohii u likuvanni heneralizovanykh zakhvoriuvan parodonta: vyklyky, perspektyvy, perevahy.
Suchasna stomatolohiia. 2018; 5: 20-23 p. [In Ukrainian].
10. Hrudianov AY, Zoryna OA. Metody dyahnostyky vospalytelnykh zabolevanyi parodonta.
Rukovodstvo dlia vrachei. M.: OOO Medytsynskoe ynformatsyonnoe ahentstvo; 2009.
112 p. [In Russian].
11. Patent Ukrainy na korysnu model № 104493: Sposib optymizatsii likuvannia kariiesu
zubiv z vykorystanniam lazernykh tekhnolohii: Burhonskyi VH, Mykolaichuk SI, Kholin VV,
vid 10.02.2016 roku, biul. №3 2016. [In Ukrainian]
12. Patent Ukrainy na korysnu model № 133310: Sposib optymizatsii likuvannia heneralizovanykh
zakhvoriuvan parodontu. Burhonskyi VH, Mykolaichuk SI, Kholin VV, Voitsekhovych
VS, Gayvoronsky VYa, Multian VV. vid 25.03.2019 biul. №6 2019. [In Ukrainian]
13. Rychard Dzh. Lamont, Robert A. Berne, Merylyn S. Lantts. Mykrobyolohyia y ym -
munolohyiadlia stomatolohov. Pod. red. prof. V.K. Leonteva. Moskva; 2010. 502 p. [In Russian].
14. Burgonskyi V, Mykolaichuk S. Photoactivated Disinfection and Backscattered Indicatrix
Usefor Follow-Upand Diagnostics of Generalized Periodontal Disease. Materialsof 7
EUROPEAN DIVISION CONGRESS OF THE WFLD, 20-22 June 2019, Parma, Italy.
15. VYa Gayvoronsky et al. Optical quality characterization of KDP crystals with incorporated
TiO2 nanoparticles and laser scattering experiment simulation, Ukr J Phys, vol 55, no
8, p 875, 2010.
16. VV Multian, VYa Gayvoronsky et al. Surface Response of Brominated Carbon
Media on Laser and Thermal Excitation: Optical and Thermal Analysis Study, Nanoscale Res
Lett., vol 12, no 1, p 146 (7pp), 2017.
17. VV Multian, AV Uklein, RL Dantec, Y Mugnier, MS Brodyn, and VYa Gayvoronsky.
Self-action effects manifestation in harmonic nanoparticles colloids, presented at the
NANOTECHNOLOGY and NANOMATERIALS NANO-2015, Lviv, Ukraine, 2015, p 337.
18. Nazir M A. Prevalence of periodontal disease, its association with systemic diseases
and prevention . International Journal of Health Sciences. 2017; 11 (2): 72–80.
19. AS Popov, VYa Gayvoronsky et al. Nonlinear optical response of the KDP single
crystals with incorporated TiO2 nanoparticles in visible range: effect of the nanoparticles concentration,
Funct Mater, vol 24, no 1, pp 5–10, 2017.
20. AS Popov et al. Nonlinear optical response of nanocomposites based on KDP single
crystal with incorporated Al2O3*nH2O nanofibriles under CW and pulsed laser irradiation at
532 nm, Opt Commun, vol 379, pp 45–53, 2016.
21. Rams Thomas & Degener John & van Winkelhoff Arie Jan. (2013). Antibiotic
Resistance in Human Chronic Periodontitis Microbiota . Journal of periodontology. p 85.
22. AV. Uklein, VV. Multian, and V.Ya. Gayvoronsky. Linear and Nonlinear Optical
Charcterizations of TiO2-Based Hybrids at the Self-Action of CW Laser Irradiation and Picosecond
Laser Pulses ; Ukr. J. Phys., vol. 58, pp. 1132–1137, 2013.

Published

2019-12-16

Issue

Section

PARADONTOLOGY